Siemens’ SynthAI (Synthetic Data and Artificial Intelligence) Combine to Improve Machine Vision

11 May 2022 | David Miller

By creating synthetic data from 3D CAD data, Siemens’ SynthAI helps machine vision systems be more rapidly deployed for applications ranging from quality control to robotic picking and assembly operations.

With its ability to help automate quality control, guide flexible pick-and-place systems, and simplify inventory tracking procedures, machine vision is of growing importance to industrial automation technology. For some time now, artificial Intelligence (AI) has played a significant role in helping manufacturers make use of machine vision and these advances show no sign of slowing down in the near term. One example of this continuing advance of AI and machine vision is Siemens Digital Industries Software's SynthAI service, which uses AI and machine learning to train machine vision systems more effectively.

While the images captured by a machine vision system cannot be analyzed without some type software algorithm, most machine vision software uses fixed-rules determined by a human programmer. In these cases, data is extracted from images in the form of various criteria such as measurement or object type and then compared against pre-established target values to make a decision. This requires many images of an object to be taken.

The application of synthetic data for machine vision training can dramatically speed up the training process. However, using synthetic data for machine vision applications requires expertise in synthetic image generation, which is complex, labor intensive, and costly. To broaden the use of synthetic data beyond the realm of experts, SynthAI allows 3D CAD (computer-aided design) data to be used for machine vision system training instead. By ingesting the CAD data for a given item, SynthAI can generate thousands of randomized synthetic images and annotate them within minutes without specialized expertise.

SynthAI’s capabilities enable it to train a machine learning model from CAD data that can then be used to detect products in real life. Once the training is complete, the model can be downloaded, tested, and deployed in machine vision systems offline. Industrial applications for Siemens SynthAI include quality inspections, flexible robotic assembly, robotic picking and sorting and kitting.

“We were looking for a quick and easy solution that would enable us to detect wire terminals in a robotic electric cabinet assembly station. With SynthAI our control engineers were able to achieve great results within just a few hours,” said Omer Einav, CEO at Polygon Technologies, a supplier of robotics technologies. “The tedious task of annotating a large set of training images to train the model was shortened significantly. The results show great promise for many additional use cases we plan to handle with SynthAI."

- END -


Related Articles

Digital Factory, Industrial Automation, Industry 4.0

Schneider Electric and Intel Partner to Accelerate Industrial Innovation

  • 13 Jun 2022
  • Schneider Electric

Schneider Electric is collaborating with Intel Corp. to extend the EcoStruxure Automation Expert by...


Industrial Automation, Industry 4.0

How Microsoft is Bringing the Metaverse to Factory Floors

  • 11 Jun 2022
  • Rachel Warren

HoloLens is being worn for a variety of efficient use cases. The metaverse is starting to show...


Industry 4.0

Digital transformation: where now for food processing firms?

  • 10 Jun 2022
  • Gwen Ridler

As the digitalisation of food and drink factories becomes a major talking point for manufacturers,...


Industry 4.0

Nokia sees chance to spur Industry 4.0

  • 10 Jun 2022

Mr Thitipan says Nokia is keen to provide industrial-grade private wireless networks that have...